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ABSTRACT

Let x(t) be a diffusion satisfying the stochastic differential
equation dx(t) = f(x(t))dt + db(t), where f£'(x) + fz(x) = ax2 + bx + ¢,
a»o0, V. Benes gave an explicit formula for the conditional density of
- x(t) given y(s), 0 € s € t, where y(s) = [Tx(s)ds + w(t), when w(*) is
a Brownian process independent of x(°). Thisoresult is extended and then
applied to derive recursive filtering equations for estimating conditional
moments E{xn(t)ly(s), 0 < g <€t}, for estimating polynomial functionals of ;

x(*), and for smoothing.
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| SIGNIFICANCE AND EXPLANATION

~ ' - A common problem in the analysis of stochastic systems is the estimation
of the system's state given only noise~corrupted or incomplete observations.
For instance, examples occur in communications theory when one wants to

; ' estimate a signal sent over a noisy channel. The problem of filtering is to

build an estimate, i.e. filter, that provides the best information about the

e 1 state given the observations.

s The most desirable solution to a filtering problem is a recursive,
physically realizable algorithm that computes the bheat mean-square error
estimate, and thus it is important to find models for which such algorithms

exist. Recently, Benel defined a class of filtering problems that allow

explicit computation of the conditional density of the signal given the past
- of the observations. This paper extends his result and then uses it to build
. exact, recursive algorithms for estimating any moment of the signal and for

estimating polynomial-type transformations of the signal.
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{ The responsibility for the wording and views expressed in this descriptive
‘ summary lies with MRC, and not with the authors of this report.
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EXPLICIT FILTERS FOR DIFFUSIONS WITH CERTAIN NONLINEAR DRIFTS

2 3

! and S. I, Marcus

D. L. Ocone ', J. S. Baras

1. Introduction.

Let f(x) be a real-valued function defined on all of R and satisfying

the Riccati eguation

2 4+ bx + c. (1.1)

£'(x) + £2(x) = ax
It is assumed that f has no singularities. WNote that this implies a 2 0,

for otherwise f explodes at some finite x. This paper considers the

filtering problem

ax(t) = f(x(t))dt + db(t)
(1.2)

x(0) = x € R
dy(t) = x(t)dt + dw(t) (1.3)
in which b{(*) and w(*) are independent Wiener processes, x(*) is the
signal, and y(°*) the observation of x(°).

For the system (1.1.)~(1.3), Bene¥ [1] recently derived an explicit
formula for the oconditional density of x(t) given Fz, where Fi 1= O=
algebra generated by {y(s)|0 € s € t}. This result is interesting because
the class of functions satisfying (1.1) includes nonlinear f, whereas

conditional densities for (1.2)-(1.3) had been computed previously only for
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linear f: for examples and an extension to the multidimensional case, see
Bened [1].
Besides conditional densities one also wants to calculate filters
Eﬁw!Fi} of x(°)- dependent statistics ¢ . Given a random process v(t)
we shall say that Efw(t)IFz} is finite dimensionally computable (FDC) if it
can be expressed as the output of a finite dimensional system of stochastic
differential equations driven by y(°*). When the signal dynamics in (1.2) are
linear, many examples of FDC estimates are known. For example, E{xn(t)IF:}
is FDC for any integer n, since the Kalman-Bucy equations calculate
E{x(t)IFZ} and the conditional variance, and higher order moments are
derived from these by virtue of the normality of the conditional density. A
more subtle class of examples consists of estimates E{n(t)IFz} where n(t)
is any polynomial functional of x(°) in the form
®n=1 k *n
n(t) = ({t (f) Ys ,***,8 )x '(s.)*eex "(s )ds *+*ds, 1< i <n,
in which Y is 4 separable function and the {ki} are non-negative integers
(Marcus, Willsky [{7]; Marcus, Mitter, Ocone [6]). Formulae and recursive
systems for the smoothed estimate E{x(s)IFz} are also well known (see {3])).
In this note, we extend the linear theory by showing that these same
statistics are FDC for the general model (1.1)=(1.3). The strateqgy, as in the
linear case, is to derive finite dimensional systems by using the explicit
form of the conditional density to truncate formally infinite dimensional
systems of moment equations. The material is organized as follows. In §2 we
calculate conditional joint densities of x(°) given F:. As a consequence,
we show that the conditional law of the process {x(s)}0 € s €< t} given FZ
and x(t) is Gaussian. This is precisely the feature that makes it possible

to handle polynomial functionals. 1In §3, we prove FDC of conditional moments,

smoothers, and polynomial functionals.
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Lie algebraic techniques from geometric control theory have been

introduced recently into filtering, especially as regards finite Adimensional
computability, and they have been worked out successfully for known FDC
problems in which f is linear. (For a survey of these ideas, see Brockett
[8].) The main results of this paper, in particular proposition 3.7, were
suggested by a Lie algebraic analysis of (1.1)-(1.3). Consequently, it seems
that the full range of the Lie theory for linear drifts extends to the general

case (1.1). Since our methods here are not algebraic, we do not pursue the

issue further, but refer instead to Ocone [7] for further discussion.
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2. Conditional Joint Densities.
Let x(°) and y(°) be given from (1.1)~(1.3), and let t = 8, > s, >
T
oo s, 20, z = (zo,z1,'°°,zn) « The expression p(zo,t;z1,s1:"'1
zn,snIF{) shall denote the joint density of (x(t),x(s1),°",x(sn))

+
conditioned on FZ, that is, for any bounded, Borel ¥ : RF LIS R

EW(x(t)."'.x(sn))lFY} = W(g)p(zotrzl.s1;“'rzn.sanz)dz.

t
+
RP 1

In Theorem 2.1 of this section, we employ a method of Bene¥ [1] to campute an
explicit formula for this conditional density. From this we then derive

p(z1,s1;"';zn,sanz,x(t)) the conditional density of (x(s4),***, x(8.))
given F: and x(t).

The results are stated in terms of an auxiliary process &(t), evolving

in R} and defined by
1
ak(t) = A(t)E(t)at + | y(t) | aB(¢)
0
E(0) = (x,0,0)"
where
-K 0 0
A(t) = 0 0 o],
ky(t)- b 0 0
1
K = (a+1) 72

and B(°*) is a Brown.ian motion independent of the signal and obsgervation

noises, b(°*) and w(°).
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T = (ET<c),£T<s1),--~,€T(sn))T

- T
& = (51(t) 051(51)1 '51(811))
Then the following conditional moments are needed:
m(t) = E{E(e) |F)}
R(t,s) := wV(E(t).E(s)lFi)

R(t) = [r,  (t)] := R{t,t)

13077 1¢4,3¢€3

M(t,s.l,"',sn) 1= E{EIFi}

T

= (m1(t),°°‘,m1(sn))
eee o= = y
Po(t,s1, ,sn) : Var(-olFt)

B(t,8,,0,8,) = Cov(E, 3 FY)

1'
= % o S o = Y1, T Y
el(E M) (Z, z{-0|Ft}) lFt}

Q(t,8,,%,8) = Var (E|F)).
To simplify later expressions, we shall often drop the (t,s’,"',sn )

dependence and write only M, P,, P and Q. In addition, let

R3(n-0-1)

v = (0,1,-1,0,"',0)T e » The random vectors Pov and Pv play an

important role in theorem 2,1 and are related by

T

Pv = ((POV)1,(POV)4,"’,(POV) ).

3n+1

- - Yy
Note that  (Pv) (P v) cov(f (s, _).E, () = ES(0)IF)),

k ~ F0Y 3k~-2
It is important to observe that all these conditional moments are properly
thought of as functionals (on C[0,t]) of y(*). Indeed, these functionals

are easily calculated by solving for every 5(') e c(0,t] the system

wo—
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j 1
& (8) = A_(s)E (8)ds + | y(s) | aB(s)

‘ Y Yy vy 0
|

E_(0) = (x,0,007.
y

Then, if m(t,y(*)) : E&_(t), m(t) (W) = m(t,y(*)(w)), and similary for R,

y
Po, etc.

z
As a final bit of notation, set F(zo) = f 0 f(s)ds.
0

5 } Theorem 2.1, Let t > 8, > s, > e ) sn. Then

< p(zo.ttz1,s1;"°:zn,snlFZ)

x| (zo-x)2
= n/\P)exp{r(zo) +zoy(t) + xk(zg-x) + "[—‘z“" - t]}

x expl-Yo<z - M + Pv, Q"' (z - M + Pv)>}
where Y = W(t,s1,"',sn,x) is a normalizing factor.

Proof. The demonstration is analogous to BeneS8' proof in [1] of the case

p(zo,tlfz), and so we shall only sketch the main steps. The Kallianpur-

Striebel formula for conditional estimation in system (1.2)-(1.3) implies that

L N ) y [N X ]
p(zolti ’zn'sn'Ft)dzo dzn

P ——
P T

(2.2)
~ 0 t t. 2
«g{ N 1{x(s yedz }expP f x(s)dy(s) = b@ f x“(8)ds}
4=0 i i 0 0
In expression (2.2), we think of y(t) as a fixed function and of E as an
expectation against the measure ¥ induced by (1.2) on the space of
continuous sample paths x(°). '%' here means proportional up to a
normalization factor that does not depend on z. To evaluate (2.2) we follow

Bened and apply a sequence of Girsanov measure transformations. Let U

dennte the measure on C(0,t] induced by x + B(°*). Then u << uE x and
’




K
| Tt (x(*)) = expl [“e(x(s)ax(s) -V, [f£2(x(s)) a8l
= B,x 0 0
By using this to change measures in the expectation term of (2.2) and noting,
. by Ito's rule, that
: ft x(s)dy(s) = x(t)yl(t) - fty(a)dx(s)
. 0 \]
, and
- 3 .
F(x+B(t)) - F(x) = [¥ £(x+B(8))aB(8) - Y [* £'(x+B(s))as,
0 0
we derive
' XX -
p( Yaz = exp{F(zo) F(x) + zoyt}
(2.6)
R f ft
R x g( Il 1{x+B(s yeaz }XP ~ y(s8)dB(s) - 4 | V(x+B(s))ds)
j=0 3 3 0 0
. where V(x) = (a+1)x2 + bx + ¢« To evaluate this last expectation, we treat
]
- the quadratic part of V as arising from the Radon-Nikodym derivative of
x + B(°®) with respect to the Ornstein-Uhlenbeck process 51('); the linear
terms in the exponent in (2.6) can then be re-expressed in terms of 52(')

and 53('). The result is

(zo-x)2
; exp{xk(zo-x) + k[ > - t]}
(2.7)
{ n
xglt Il 1
40 {51(3

- b 4
j‘)edzj‘}exp-(ﬁz(t) EeniFl} .

Given FZ, E(*) is a Gaussian process, and thus the expectation in (2.7) may

be written, up to a normalizing factor, as

= 1 -EE + “lz-E2 + Y, ¢ >
J ag expl- Y <t EE, * Bve By (% EE, Pov)>}exp /y <v BV
R2n+2
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where E £ = E{30|FZ} and where dC signifies that g, =z

y 0 o’

C4 = 21'...'C3n+1 =z are held fixed and integration is over the remaining
variables. But this last expression integrates by standard Gaussian integral
formulae to a factor proportional to
1 ~1
exp{- /2<z2 =M+ Py, 0 (z-M*+ P)>}. (2.8)
By combining (2.6)=(2.8), we arrive at the desired result. [ |
The conditional density of the process x(°) thus consists of a Gaussian

factor multiplied by expF(z,;). Further conditioning on x(t) will remove

exp F(z,) and leave only the normal part. Indeed, let
0

'-'-'(2) = XX T
g = (51(31), ,51(sn))
£y (8 22
o({t,s, ,***,s8 ) =
1 n
Q21 Q22

sz(tls1l ...Isn) = Var(E(Z) le)

r12(t)-r13(t) m1(t)

Pv(2) M(2)

Corollary 2.9, The conditional law of (x(s1),'°',x(sn)) given FZ and

x(t) is normal with mean

(2) (2) -1
M PV + r11(t) 921(x(t) - m‘(t) + Pv1)

and variance sz-r::(t)Q21Q

12,




Proof. Use (2.1) to conclude that

p(z1.s1:"':zn.sn| xo(t)= zo.F{) = p(zo,t:'";zn,sanZ)/p(zo,tlF’é)

L exp(- D§<5_- M+ Pv,Q-1(z_7 M+ Pv)>}

1 2
TS (zy = m (t) + (Pv),) 1.

But this is just the conditional density of n1,---,nn given no where

. x expf3§

r 0

(n0,°--,nn) is a normal random vector with mean M - Pv and variance Q.

The result then follows from the standard formula for conditioning one part of

a normal random vector upon another. [
This corollary demonstrates how closely those diffusions defined by

(1.1)-(1.2) are related to Gaussian processes. In fact, the steps above can

be repeated to calculate joint densities of the process x(*); (2.1) yields 1
the correct expression if y(°*) is replaced by 0 . Then, in the same way,
it follows that (xls1),"',x(sn)lx(t)) is normal, that is, the process

. {x(s)]0 € s € t} conditioned on the endpoint x(t) is Gaussian. This

conditional normality is key to the filtering results of §3.




3. Filtering Equations.

3.1. Conditional Moments.

N
Let x (t) := E{x(t)le}. x“(t) satisfies the equation

ax® = n(n=1)/2x"2 + nf(x)x™ at + X - ::x/h][dy - xdt] (3.1)

(Fujisaki, Kallianpur, Kunita [2]). To calculate x one must therefore also
4>1 ’/\\n

find x » £(x)x , etc. These in turn also satisfy stochastic differential
equations that introduce yet other quantities to be estimated. Continuing in
this manner, if we begin with ;, we arrive at an infinite, coupled set of
conditional moment equations for ;,x s°0e,x ,ee0e¢,f(x)x, etc. Our approach
to finite dimensional computability will be to use conditional moment
identities, derived from the form of P(x,tlF:), to truncate this infinite
system after a finite number of terms. Actually, FDC of the moments could be
argued on general grounds using the fact that the FDC process u(t) (see
immediately below) characterizes p(z,tIF:). However, the approach here leads
to explicit filtering eguaticas.

Straightforward analysis of (2.1) shows that

p(x,t |F) = exp{F(z) - (z-u(t))2/20(t) )

-1
N(t,x)
where N(t,x) is a normalizing factor, and
=1-&F ooy =0 (3.2)
dp = [~ou-V,boat + oy  u(0) = x (3.3)
(See Bene¥ [1].) Note that (3.2) implies that 1 - nzoz(t) >0 ¥t >0,

and hence that

a <o e v t >0,




W i
.‘.-J.’...L.:..-

AP %

PV D

ik g
s

. J_y4,

e ol

.. e v e RN TV R AT} L e B ULV SRR SRR

-
As a consequence, xn(t) is well-defined for any n . If a > 0, (1.1)

1 Y.
é a’? 2
implies £(x) ~a ‘“x as |x] » » and thus that F(z) ~ 5z as
|z] + « Therefore
1 -
F(z) - (z - w2/20 ~%(a 2- Y43, iz| + =

and so P(z,tIFZ) decays as exp[-&zl, s -1/2 (a"1 - 31/2) >0. If a=0,
then b =0, ¢ > 0 is necessary in order that (1.1) have a solution f on
R without singularities. Then f will be bounded,and F(z) will grow at
most linearly.

Lemma 3.4, For n > 0

1 n+32 2. o 2. 1.2
(0@ =a)x™ %= (b+ 200 )x" '+ (c + ((2n+1) = )o Dx
173 o3
+ 2uno xn- - n(n—1)xn .

Proof. Integrating by parts, we have

1 o a,n 2
We, [ 4e exera) —S5(a" expl-(z - /201

= f”dz[ff(z) + fz(z)]znp(z,tIF{)

2 N
= ax +

bx + Cx .

2
Evaluation of %(zn exp(=(z - u) 2/2 a]) in the first integral leads to the
daz

desired identity.

=11l=-
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Proposition 3.5: x (t) 4is PDC for all n .

P
Proof: Since o 1(t) - a>0, lemma 3.1 implies that xm(t), m > 2 can be

expressed as a linear combination with FDC coefficients of lower order
conditional moments. Thus it suffices to prove that x(t) is FDC. For
x(t), (3.1) becomes

~

/\ ’} 4\2 a ~
dx = £(x)dt + (x - x )(dy - xdt), x(0) = x o

Now
S 1 2
f(x) = TORT [ azld/az expF(z)lexpl-(z - uw)“/20d]
= - fdz(z - l.l) o-1p(z't|F{)
= -(x-wo
and
x> = [x(b+2u0 ) +c+ (1- 0100 (6 -
Thus

Y a

-1
dx = (y = x)o &

s Uxtb + 2u0 ) +c+ (1= oot - a)" - x2)1ay - xat)

-~

together with (3.2)-(3.3) constitutes a finite~-dimensional system for x(t).

Remark. It is also clear that f£(x(t))x"(t) will be FDC for any n; simply

eliminate f(x(t)) in favor of polynomials in x(t) by integration by parts
as in the proof above. In the same way, filters may be constructed for
any conditional estimate in the infinite set of moment equations generated by

starting with x(t) and using (3.1).

=
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3.2 Smoothing.

Proposition 3.6. Let 8 < t. Then

sinhks Kt

sinhxe {x(t) - xe

Elx(s) IFY} = + (B(t,8)v),] + xe '8 - (p(t,8)v) e

Proof: This is immediately consequent from corollary 2.9 once it is noted

that
-1 . o Binhks
Ty ()0, = 1y (t)cov(E (t),E (8)) = oome
and

-K
m1(t) = xe t.

Explicit formulae for (P(t,s)v); and (P(t,s)v), are easily found and will

be given in the next section.

3.3. Polynomial Functionals.

Let n(t) be any non-anticipating functional of the signal process of

the form

Sn-1 k1 kn
n(t) = ft... I Y(S,r"'ls )x (81)°'°X (s )ds "'ds1
0 0 n n n

where k1,"',kn are arbitrary, non-negative integers and Y(s1,°",sn) is a

separable function. Also let 7n(t) = E{n(t)lF{}.

Proposition 3.7, n(t) is FDC

For simplicity we restrict attention to the case
k1 = k2 = 000 kn = 1; the method of proof extends easily to general
choices for the ki's. Our proof relies on the following identity, presented

here in the form that it appears in Marcus and Willsky (7].




Lemma 3.8, Let (u1,'°°,um) be a normal random vector with ej = Euj and

vijy' cov(ui,uj). Then

Elu **tu ] = Te +lv csee, + LV, .V, . e sece, 4 eee

The sums are taken over all possible combinations of pairs of indices.

Lemma 3.9. Let s1 > eee sn + Then

n
see Y - j
E{x(s1) x(sn)lFt,x(t)} jzo x (t)aj

(tls.‘ ’ ...lsn)

for some separable functions a, (t,s "',sn), 0 € 3<n, depending on

3 1’
VARSI
(2) (2) -1 ces -
Proof. Let zj = Mj - pvj + r11(t) Q1z(t. ,sn)[x(t) ml(t) + (Pv),]

~ -1
Q= Q2 = Ty(%) 2452,

and apply lemma 3.8 and corollary 2.9. Thus

E(x(s )"‘x(s ) Ix(t) Fy} = l "‘z + Z Q ceek,
j1j2 j3 jn

o o L eeey oo .
! z Z Qj1j2 Qj3j4 35 jn *

This is an nth order polynomial in x(t) since £ is a llnear function

b
of x(t) for each j . Moreover, it is clear that the coefficients aj will
be separable if Po(t.s1,"‘,sn) and hence Q(t,s1,"°,sn) are separable (Q

is a submatrix of Po). But




;

-

=

R(t,t) R(t'!1) oo R(t'.ﬂ)

R('1;t) R(‘1"'|) s R(ﬂ],’n)

Pb(t,s.',ﬂ',sn) = :

R(s ,t) o o o R(s ,s8 )
n n''n

L -

and R(t,s) = ¢A(t,s)R(s,s) = ¢A(t,0)0;1(s,0)a(s) where on(t.u) is the

state transition matrix of A(t). Thus Po(t. ---,sn) is indeed separable.

Remark. Upon further inspection of the terms OA(t,s) and R(s), the proof

of this lemma demonstrates that ay may be written

NOTRTRV R 12 83,1""5;,2“1""8;,1.":1’ (3.10)

a

where each s;' x’ 0 <k <n is either deterministic or a non-anticipating
’

functional of the observation process y{ ).

Proof of proposition: By using lemma 3.9

'g
E{n(t) |Ft}

- ]
- [ X} r‘.1 [N N ] I X N J y y L X ]
of” g Yy(8,) e eox (8 JERIx(,) seoxts ) [, x(£)) |F }as_++eas,

R | s1\-1
= jzo x-(t) ({tof 7(31.--~.sn)aj(t.s1,"-.sn)dsnu-ds1 .

To complete the proof, it is only necessary to show that the coefficients of

;j(t) are FDC. Each coefficient is a sum of terms of the form

8
n
un+1(t) - qo(t) fc.uof “1(‘1)oonan('n)dsnoo.dg1

which can be computed on-line by the system




u1(t) - uh(t)

“z“’ = aﬂ_,(t)u1(t) uz(o) =0
un(t) = 01(t)un(t) un(O) =0
un+1(t) = ao(t)un(t) un+1(0) =0.

Thus u,,4(t) will be FDC if each ai(t) is FDC. However, reasoning from
the remark after lemma 3.9, each ai(t) will be either deterministic, or a

deterministic function multiplied by one of the y(°)-dependent B; k(t) from
’

(3.10). Now by the proof of lemma 3.9 these (t) come from the

i
8
3ok
y(°*)-dependent terms in 2 1<€4i<n, and Q. Actually, inspection

il
reveals that 1) Q 1is independent of y(°), since it is a function of the

joint covariance 51(t),‘°°,€1(sn)1 and 2) the only y-dependence in the
li lies in Pv. Recall from §2, that a typical element of Pv is

cov(51(8)ps52(t) - Ea(t)): a simple calculation shows this equals

cov(51(s).52(8) - 53(3)) - K-1sinhks fte-xug(u)du
0
(3.11)

- K-1sinhks fse-Kug(u)du
0

where g(u) = Ky(u) -E@th The y(°*) functionals in this expression are

certainly FDC and thus the components B; k(t) are FDC. This completes the
’

proof.

The proof of proposition 3.7 is similar to the proof of the linear case
due to Marcus and Willsky (7] in its use of Gaussian moment identities.
Actnually, because conditional Gaussianity obtains in the linear case without

first conditioning on x(t), Marcus and Willsky are able to use the general

filtering equation and a simpler moment identity than lemma 3.8 to build a
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proof by induction on the order of n(t). By 'general filtering equation' is
meant the representation of Fujisaki, Kallianpur, Kunita ([2]:
k k

- k1 sn-2 2 n
an = elx '(e) [Feoe [P 2yie,o0x 2ag) o0 Ms _ das  oeeas, [FY)ae

0 0
{3.12)

~ A

+ [nf:;;?E) - n{t)x(t)}[dy(t) - x(t)at].

In our proof, application of (3.12) is superfluous, although, when calculating
the filter in a particular example, it can be employed to advantage. The
example below will illustrate the possibilities.

Marcus, et al [6] give an alternate proof of finite dimensional
computability when f is linear by using homogeneous chaos theory and
multiple integral expansions. Such an approach might also be possible here by
first conditioning on x(t), but this is not pursued, since the calculation

would ultimately be like the one here.

Example., Consider the model
dx(t) = f(x(t))dt + db(t) x(0) = Xy
an(t) = x*(t)ae n(o) = o
dy(t) = x(t)dt + dw(t) y(0) =0
where the x(°*) and y(°*) equations are as in (1.1)-(1.2). We will present
a finite dimensional system for computing ;(t) = E{ ftxz(s)dle{}. This
problem was chosen in part by way of comparison to thg special case f = 0
which is treated in detail in Liu and Marcus [4). The system given here for
;(t) is, of course, one among many possibilities; our construction was

guided by the decision to use Ito equations driven by the innovations

av(e) := dy(t) = x(t)dt.




Let

u(t) = (sinhet)™2 [& (sinhes)Zas = (sinhre)”'((ax) " Vsinn2ce - Y e1.

0
Then
~ A ~
dan = ;)dt + u(t)[x3 - ;)x]dv w
+ 2[;>- ;2][u(t)(v (£)k 'sinhkt + ——— (Oy(t) - M)
2 14k ¥
+ v1(t)sinth - (Ksinth)—1v3(t)]dV
n(o) = 0 s (3.13)
dv1 = sinhkt (M - Oy(t)) 1+:° dat v1(0) = 0
-Kt 1
dv, = e [xy(t) - ', blat v2(0) =0
av, = (sinhet)?v_(t)rat v,(0) = 0. )
3 2 3
" ~

(3.13) is not the complete system, since equations for M,d,x,x , and x3 are

also needed. However these are easily garnered from §3. A brief derivation

of (3.13) follows. From (3.12)

an = :hdt + (G§ - nx)av, (3.14)

However, corollary 2.9 implies

-1 2
E{xz(s)IFZ,x(t)} = sz - r11(t)Q21Q12 + E {x(s)IF:,x(t)}

(3.15)

-2 2 2
= F(t,s) + t"(t)Qz1 x (t)

-1 -1
+ 2x(t)t11(t)921[n1(a) - (pv)2 - r11(t)921(m1(t) - Pv1)]

where F(t,s) combines those terms not depending on x(t). Now




omconl it 2 & L

-1
r”(t)Q21 = ginhks/sinhkt,

and

Pv4 = Pv1(s) - K'1sinhxs (fte-xug(u)du - fse-xug(u)du]-
0 0

(Recall that g(u) = ky{u) - 1/2 b.) Further, it can be shown

g
m1(t) - Pv1(t) = %0 (4 - oy)(t).

Using thesgse identities in (3.15) it follows that
- mx o= [Elxe) = x(e)EGE () IFY,x(e)}(F Y as
0

\ N\ A PN
= (x5 - x°x)ult) + z(ib - x2)ult) ((Oy = W)

g -1 t -Ku
e + X sinhxt £ e g(u)du
A

+ 2(x2 - xz)[(s:lnhict:)-1 ft(sinhks)[m1(s) - Pv1(s)]d8
0

- (Ksinhvtt)-1 ft(sinhrs)z fse-‘ug(u)duds].
0 0

/} Ny~
2 2 2 -1 g
(x” = x"x)u(t) + 2(x" -~ x )[u(t)(vz(t)K sinhkt + 140

(oy(t)=-u))

+ v1(t)sinh< + -(Ksinhtt)-1v3(t)]

(3.16)

Placing (3.16) in (3.14) one obtains the desired result.

=]19=
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